Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry C, 10(118), p. 5073-5080, 2014

DOI: 10.1021/jp409962x

Links

Tools

Export citation

Search in Google Scholar

Ab Initio Calculation of Proton Transport in DyPO4

Journal article published in 2014 by Isaac M. Markus, Nicole Adelstein, Mark Asta ORCID, Lutgard C. De Jonghe
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Proton mobilities in xenotime-structured DyPO4 have been investigated through first-principles calculations based on electronic density functional theory. The calculated mobility is shown to be highly anisotropic, consistent with the tetragonal symmetry of the xenotime crystal structure. Due to the presence of one-dimensional channels along the c-axis, the hopping rate is significantly enhanced along this direction. Specifically, the activation energy for hopping along the a- and b-axes is computed to be 0.45 eV away from aliovalent dopant impurities, while the calculated energy barrier within the channels that run along the c-axis is 0.15 eV. The corresponding hopping rates along the c-axis channels are more than 2 orders of magnitude larger than those calculated previously for the monoclinic monazite-structured LaPO4 compound. The effects of aliovalent dopants on proton migration have also been investigated, considering the case of Ca2+ substitution for Dy3+. These calculations reveal a dopant-proton binding energy of approximately 0.4 eV and an increase in the hopping barriers near the dopant by up to 0.2 eV. These dopant effects were found to be relatively localized, with minimal changes to the energetics of the protons obtained more than approximately 5 Å away from the aliovalent impurity.