Published in

Mary Ann Liebert, DNA and Cell Biology, 5(16), p. 599-610, 1997

DOI: 10.1089/dna.1997.16.599

Links

Tools

Export citation

Search in Google Scholar

Identification of the Promoters for the Human and Murine Protective Protein/Cathepsin A Genes

Journal article published in 1997 by Robbert J. Rottier ORCID, Alessandra D'Azzo
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Protective protein/cathepsin A (PPCA) is a lysosomal serine carboxypeptidase that forms a complex with beta-galactosidase and neuraminidase. Its deficiency in humans leads to the lysosomal storage disorder galactosialidosis (GS). The pathologic manifestations in patients relate primarily to the severe deficiency of neuraminidase, and the physiological significance of cathepsin A activity remains unclear. The mouse model of GS, which closely resembles the human phenotype, shows that cells from numerous tissues, especially the central nervous system (CNS), are affected by this disease. To study the site and level of expression of PPCA mRNA in murine and human tissues, we analyzed the promoter regions of the corresponding genes. Their 5' genomic regions were strikingly similar in both organization and sequence. A single 1.8-kb PPCA transcript is present in humans, whereas mouse tissues have a major 1.8-kb and a minor 2.0-kb transcript, both of which are differentially expressed. These two mouse mRNA species differ only in their 5' untranslated region (UTR). The larger mRNA, unique to mouse, is transcribed from an upstream TATA-box-containing promoter, which is absent in the human gene. The downstream promoter, which transcribes the 1.8-kb mRNA common to human and mouse, has characteristics of housekeeping gene promoters and contains putative Sp1 binding sites and three USF/MLTF sequences. In vitro studies demonstrated that expression from the downstream promoter is higher than that from the upstream murine-specific promoter. In situ hybridization of mouse tissue sections identified regions of the brain that preferentially express the 2.0-kb transcript. Our results imply that PPCA mRNA distribution and regulation in murine tissues differs from that in human tissues.