Published in

Oxford University Press, Carcinogenesis: Integrative Cancer Research, 7(21), p. 1281-1289, 2000

DOI: 10.1093/carcin/21.7.1281

Oxford University Press (OUP), Carcinogenesis: Integrative Cancer Research, 7(21), p. 1281-1289

DOI: 10.1093/carcin/21.5.281

Links

Tools

Export citation

Search in Google Scholar

The relationship between genetic damage from polycyclic aromatic hydrocarbons in breast tissue and breast cancer

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A number of polycyclic aromatic hydrocarbons (PAH) are widespread environmental contaminants that cause mammary cancer experimentally. We investigated whether exposure and susceptibility to PAH, as measured by PAH-DNA adducts in breast tissue, are associated with human breast cancer. We carried out a hospital-based case-control study using immunohistochemical methods to analyze PAH-DNA adducts in tumor and nontumor breast tissue from cases and benign breast tissue from controls. The subjects were white, African-American and Latina women without prior cancer or treatment, including 119 women with breast cancer and 108 with benign breast disease without atypia. PAH-DNA adducts measured in breast tumor tissue of 100 cases and in normal tissue from 105 controls were significantly associated with breast cancer (OR=4.43, 96% CI 1.09-18.01) after controlling for known breast cancer risk factors and current active and passive smoking, and dietary PAH. There was substantial interindividual (17-fold) variability in adducts overall, with 27% of cases and 13% of controls having elevated adducts. The odds ratio for elevated adducts in tumor tissue compared with control tissue was 2.56 (1. 05-6.24), after controlling for potential confounders. Adduct levels in tumor tissue did not vary by stage or tumor size. Among 86 cases with paired tumor and nontumor tissue, adducts levels in these two tissues were highly correlated (r=0.56, P<0.001). However, the corresponding associations between case-control status and adducts measured in nontumor tissue from 90 cases and in normal tissue from 105 controls were positive but not statistically significant. Overall, neither active nor passive smoking, or dietary PAH were significantly associated with PAH-DNA adducts or breast cancer case-control status. These results suggest that genetic damage reflecting individual exposure and susceptibility to PAH may play a role in breast cancer; but more research is needed to determine whether the findings are relevant to causation or progression of breast cancer.