Published in

Springer, Neurochemical Research, 8(33), p. 1501-1508, 2008

DOI: 10.1007/s11064-008-9618-8

Links

Tools

Export citation

Search in Google Scholar

Differential Contribution of L-, N-, and P/Q-type Calcium Channels to [Ca2+]i Changes Evoked by Kainate in Hippocampal Neurons

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We investigated the contribution of L-, N- and P/Q-type Ca(2+) channels to the [Ca(2+)](i) changes, evoked by kainate, in the cell bodies of hippocampal neurons, using a pharmacological approach and Ca(2+) imaging. Selective Ca(2+) channel blockers, namely nitrendipine, omega-Conotoxin GVIA (omega-GVIA) and omega-Agatoxin IVA (omega-AgaIVA) were used. The [Ca(2+)](i) changes evoked by kainate presented a high variability, and were abolished by NBQX, a AMPA/kainate receptor antagonist, but the N-methyl-D-aspartate (NMDA) receptor antagonist, D-AP5, was without effect. Each Ca(2+) channel blocker caused differential inhibitory effects on [Ca(2+)](i) responses evoked by kainate. We grouped the neurons for each blocker in three subpopulations: (1) neurons with responses below 60% of the control; (2) neurons with responses between 60% and 90% of the control, and (3) neurons with responses above 90% of the control. The inhibition caused by nitrendipine was higher than the inhibition caused by omega-GVIA or omega-AgaIVA. Thus, in the presence of nitrendipine, the percentage of cells with responses below 60% of the control was 41%, whereas in the case of omega-GVIA or omega-AgaIVA the values were 9 or 17%, respectively. The results indicate that hippocampal neurons differ in what concerns their L-, N- and P/Q-type Ca(2+) channels activated by stimulation of the AMPA/kainate receptors.