Published in

American Physical Society, Physical Review Letters, 9(108)

DOI: 10.1103/physrevlett.108.097002

Links

Tools

Export citation

Search in Google Scholar

Ultrafast Momentum-Dependent Response of Electrons in AntiferromagneticEuFe2As2Driven by Optical Excitation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Employing the momentum sensitivity of time- and angle-resolved photoemission spectroscopy we demonstrate the analysis of ultrafast single- and many-particle dynamics in antiferromagnetic EuFe(2)As(2). Their separation is based on a temperature-dependent difference of photoexcited hole and electron relaxation times probing the single-particle band and the spin density wave gap, respectively. Reformation of the magnetic order occurs at 800 fs, which is 4 times slower compared to electron-phonon equilibration due to a smaller spin-dependent relaxation phase space.