Published in

Springer, Applied Microbiology and Biotechnology, 5(83), p. 957-963, 2009

DOI: 10.1007/s00253-009-1995-7

Links

Tools

Export citation

Search in Google Scholar

Citric acid wastewater as electron donor for biological sulfate reduction

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Citrate-containing wastewater is used as electron donor for sulfate reduction in a biological treatment plant for the removal of sulfate. The pathway of citrate conversion coupled to sulfate reduction and the microorganisms involved were investigated. Citrate was not a direct electron donor for the sulfate-reducing bacteria. Instead, citrate was fermented to mainly acetate and formate. These fermentation products served as electron donors for the sulfate-reducing bacteria. Sulfate reduction activities of the reactor biomass with acetate and formate were sufficiently high to explain the sulfate reduction rates that are required for the process. Two citrate-fermenting bacteria were isolated. Strain R210 was closest related to Trichococcus pasteurii (99.5% ribosomal RNA (rRNA) gene sequence similarity). The closest relative of strain S101 was Veillonella montepellierensis with an rRNA gene sequence similarity of 96.7%. Both strains had a complementary substrate range.