Published in

Wiley, Biopolymers, 4(100), p. 325-336, 2013

DOI: 10.1002/bip.22266

Links

Tools

Export citation

Search in Google Scholar

Peptides as models for the structure and function of viral capsid proteins: Insights on dengue virus capsid: Peptides for the Structure and Function of Viral Capsid Proteins

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The structural organization of viral particles is among the most astonishing examples of molecular self-assembly in nature, involving proteins, nucleic acids, and, sometimes, lipids. Proper assembly is essential to produce well structured infectious virions. A great variety of structural arrangements can be found in viral particles. Nucleocapsids, for instance, may display highly ordered geometric shapes or consist in macroscopically amorphous packs of the viral genome. Alphavirus and flavivirus are viral genera that exemplify these extreme cases, the former comprising viral particles structured with a T = 4 icosahedral symmetry, whereas flavivirus capsids have no regular geometry. Dengue virus is a member of flavivirus genus and is used in this article to illustrate how viral protein-derived peptides can be used advantageously over full-length proteins to unravel the foundations of viral supramolecular assemblies. Membrane- and viral RNA-binding data of capsid protein-derived dengue virus peptides are used to explain the amorphous organization of the viral capsid. Our results combine bioinformatic and spectroscopic approaches using two- or three-component peptide and/or nucleic acid and/or lipid systems. © 2013 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 100: 325-336, 2013.