American Chemical Society, Journal of the American Chemical Society, 23(124), p. 6544-6545, 2002
DOI: 10.1021/ja020214b
Full text: Download
The potent antitumor activity of the ansamitocins, polyketides isolated from Actinosynnema pretiosum, is absolutely dependent on a short acyl group esterified to the C-3 oxygen of the macrolactam ring. Asm19, a gene in the ansamitocin biosynthetic gene cluster with homology to macrolide O-acyltransferase genes, is thought to encode the enzyme catalyzing this esterification. A mutant carrying an inactivated asm19 no longer produced ansamitocins but accumulated N-desmethyl-4,5-desepoxymaytansinol, rather than maytansinol, indicating that the acylation is not the terminal step of the biosynthetic sequence. Bioconversion experiments and in vitro studies with recombinant Asm19, expressed in Escherichia coli, showed that the enzyme is very specific toward its alcohol substrate, converting N-desmethyl-4,5-desepoxymaytansinol (but not maytansinol) into ansamitocins, but rather promiscuous toward its acyl substrate, utilizing acetyl-, propionyl-, butyryl-, isobutyryl-, as well as isovaleryl-CoA.