Published in

Elsevier, Journal of Chemical Thermodynamics, (74), p. 263-268

DOI: 10.1016/j.jct.2014.02.014

Links

Tools

Export citation

Search in Google Scholar

Diffusion of sodium alginate in aqueous solutions at T=298.15K

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Taylor dispersion technique was used for measuring mutual diffusion coefficients of sodium alginate aqueous solutions at T = 298.15 K, by using as carrier stream solution both pure water and solutions of this polyelectrolyte at a slightly different concentration. The limiting values found at infinitesimal ionic strength, D0, were determined by extrapolating to c → 0. These studies were complemented by molecular mechanics calculations. From the experimental data, it was possible to estimate both the limiting conductivity and the tracer diffusion coefficient values for the alginate anion, and the hydrodynamic radius of the sodium alginate (NaC6H7O6), as well as to discuss the influence of the kinetic, thermodynamic and viscosity factors on the diffusion of sodium alginate in aqueous solutions at finite concentrations. Thus, the aim of our innovative research is to contribute to a better understanding of the structure and the thermodynamic behavior of these polymeric systems in solution and supplying the scientific and technological communities with data on these important parameters in solution transport processes.