Elsevier, Brain Research, (1586), p. 99-108, 2014
DOI: 10.1016/j.brainres.2014.08.047
Full text: Download
The thalamic midline/intralaminar complex is part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The midline thalamic nuclei connect with the medial prefrontal cortex and the medial temporal lobe. On the other hand, the intralaminar nuclei connect with the fronto-parietal cortex. Taking into account this connectivity pattern, it is not surprising that the midline/intralaminar complex has been implicated in a broad variety of cognitive functions, including memory process, attention and orientation, and also reward-based behavior. Serotonin (5-HT) is a neurotransmitter that exerts different post-synaptic roles. Serotonergic neurons are almost entirely restricted to the raphe nuclei and the 5-HT fibers are distributed widely throughout the brain, including the midline/intralaminar complex. The present study comprises a detailed description of the morphologic features and semiquantitative analysis of 5-HT fibers distribution in the midline/intralaminar complex in the rock cavy, a typical rodent of the Northeast region of Brazil, which has been used by our group as an anatomical model to expand the comprehension about phylogeny on the nervous system. The 5-HT fibers in the midline/intralaminar nuclei of the rock cavy were classified into three distinct categories: (1) beaded fibers, which are relatively fine and endowed with large varicosities; (2) fine fibers, with thin axons and small varicosities uniformly distributed in whole axon; and (3) stem axons, showing thick non-varicose axons. Moreover, the density of 5-HT fibers is variable among the analyzed nuclei. On the basis of this diversity of the morphological fibers and the differential profile of optical density among the midline/intralaminar nuclei of the rock cavy, we conclude that the serotonergic system uses a diverse morphologic apparatus to exert a large functional repertory in the midline/intralaminar thalamic nuclei.