Published in

Oxford University Press, Human Molecular Genetics, 2(24), p. 525-539, 2014

DOI: 10.1093/hmg/ddu472

Links

Tools

Export citation

Search in Google Scholar

Identification and characterization of PKCγ, a kinase associated with SCA14, as an amyloidogenic protein

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Amyloid assemblies are associated with a wide range of human disorders, including Alzheimer's and Parkinson's diseases. Here we identify protein kinase C (PKC) γ, a serine/threonine kinase mutated in the neurodegenerative disease spinocerebellar ataxia type 14 (SCA14), as a novel amyloidogenic protein with no previously characterized amyloid-prone domains. We found that overexpression of PKCγ in cultured cells, as well as in vitro incubation of PKCγ without heat or chemical denaturants, cause amyloid-like fibril formation of this protein. We also observed that SCA14-associated mutations in PKCγ accelerate the amyloid-like fibril formation both in cultured cells and in vitro. We show that the C1A and kinase domains of PKCγ are involved in its soluble dimer and aggregate formation, and that SCA14-associated mutations in the C1 domain cause its misfolding and aggregation. Furthermore, long-term time-lapse imaging indicates that aggregates of mutant PKCγ are highly toxic to neuronal cells. Based on these findings, we propose that PKCγ could form amyloid-like fibrils in physiological and/or pathophysiological conditions such as SCA14. More generally, our results provide novel insights into the mechanism of amyloid-like fibril formation by multi-domain proteins.