Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Agricultural and Food Chemistry, 9(60), p. 2090-2101, 2012

DOI: 10.1021/jf204696w

Links

Tools

Export citation

Search in Google Scholar

The Identification and Interpretation of Differences in the Transcriptomes of Organically and Conventionally Grown Potato Tubers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In the European integrated research project SAFEFOODS, one of the aims was to further establish the potential of transcriptomics for the assessment of differences between plant varieties grown under different environmental conditions. Making use of the knowledge of cellular processes and interactions is one of the ways to obtain a better understanding of the differences found with transcriptomics. For the present study the potato genotype Santé was grown under both organic and conventional fertilizer, and each combined with either organic or conventional crop protection, giving four different treatments. Samples were derived from the European project QualityLowInputFood (QLIF). Microarray data were analyzed using different statistical tools (multivariate, principal components analysis (PCA); univariate, analysis of variance (ANOVA)) and with pathway analysis (hypergeometric distribution (HGD) and gene set enrichment analysis (GSEA)). Several biological processes were implicated as a result of the different treatments of the plants. Most obvious were the lipoxygenase pathway, with higher expression in organic fertilizer and lower expression in organic crop protection; the starch synthase pathway, with higher expression in both organic crop protection and fertilizer; and the biotic stress pathway, with higher expression in organic fertilizer. This study confirmed that gene expression profiling in combination with pathway analysis can identify and characterize differences between plants grown under different environmental conditions.