Dissemin is shutting down on January 1st, 2025

Published in

American Society for Cell Biology, Molecular Biology of the Cell, 12(16), p. 5630-5638

DOI: 10.1091/mbc.e05-07-0687

Links

Tools

Export citation

Search in Google Scholar

Distinct Profiles of REST Interactions with Its Target Genes at Different Stages of Neuronal Development

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Differentiation of pluripotent embryonic stem (ES) cells through multipotent neural stem (NS) cells into differentiated neurons is accompanied by wholesale changes in transcriptional programs. One factor that is present at all three stages and a key to neuronal differentiation is the RE1-silencing transcription factor (REST/NRSF). Here, we have used a novel chromatin immunoprecipitation-based cloning strategy (SACHI) to identify 89 REST target genes in ES cells, embryonic hippocampal NS cells and mature hippocampus. The gene products are involved in all aspects of neuronal function, especially neuronal differentiation, axonal growth, vesicular transport and release, and ionic conductance. Most target genes are silent or expressed at low levels in ES and NS cells, but are expressed at much higher levels in hippocampus. These data indicate that the REST regulon is specific to each developmental stage and support the notion that REST plays distinct roles in regulating gene expression in pluripotent ES cells, multipotent NS cells, and mature neurons.