Published in

Microbiology Society, Journal of General Virology, 6(83), p. 1465-1476, 2002

DOI: 10.1099/0022-1317-83-6-1465

Links

Tools

Export citation

Search in Google Scholar

Rabies virus glycoprotein can fold in two alternative, antigenically distinct conformations depending on membrane-anchor type

Journal article published in 2002 by Antoine P. Maillard ORCID, Yves Gaudin
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Rabies virus glycoprotein (G) is a trimeric type I transmembrane glycoprotein that mediates both receptor recognition and low pH-induced membrane fusion. We have previously demonstrated that a soluble form of the ectodomain of G (G1–439), although secreted, is folded in an alternative conformation, which is monomeric and antigenically distinct from the native state of the complete, membrane-anchored glycoprotein. This has raised questions concerning the role of the transmembrane domain (TMD) in the correct native folding of the ectodomain. Here, we show that an ectodomain anchored in the membrane by a glycophosphatidylinositol is also folded in an alternative conformation, whereas replacement of the TMD of G by other peptide TMDs results in correct antigenicity of G. However, mutants with an insertion of a hydrophilic linker between the ectodomain and the TMD also fold in an alternative conformation. The influence of the membrane-anchor type on G ectodomain trimerization and folding is discussed.