Published in

American Physiological Society, American Journal of Physiology - Heart and Circulatory Physiology, 6(289), p. H2632-H2640, 2005

DOI: 10.1152/ajpheart.00205.2005

Links

Tools

Export citation

Search in Google Scholar

Flow inhibits inward remodeling in cannulated porcine small coronary arteries

Journal article published in 2005 by Erik N. T. P. Bakker ORCID, Adrian Pistea, Jos A. E. Spaan, Ed VanBavel
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The mechanisms of flow-induced vascular remodeling are poorly understood, especially in the coronary microcirculation. We hypothesized that application of flow in small coronary arteries in organoid culture would cause a nitric oxide (NO)-mediated dilation and inhibit inward remodeling. We developed an organoid culture setup to drive a flow through cannulated arterioles at constant luminal pressure via a pressure gradient between the pipettes. Subepicardial porcine coronary arterioles with diameter at full dilation and 60 mmHg ( D0) of 168 ± 10 (SE) μm were cannulated. Vessels treated with Nω-nitro-l-arginine (l-NNA) to block NO production and untreated vessels were pressurized at 60 mmHg for 3 days with and without flow. Endothelium-dependent dilation to 10−7M bradykinin was preserved in all groups. Tone was significantly less in vessels cultured under flow conditions in the last half of the culture period. Untreated and l-NNA-treated vessels regulated their diameter to yield shear stresses of 10.3 ± 2.1 and 14.0 ± 2.4 (SE) dyn/cm2, respectively (not significantly different). Without l-NNA, passive pressure-diameter curves at the end of the culture period revealed inward remodeling in the control group [to 92.3 ± 1.3% of D0(SE)] and no remodeling in the vessels cultured under flow conditions (100.2 ± 1.3% of D0); with l-NNA, the group subjected to flow showed inward remodeling (92.1 ± 2.5% of D0). We conclude that pressurized coronary resistance arteries could be maintained in culture for several days with flow. Vessels cultured under flow conditions remained more dilated when NO synthesis was blocked. Inward remodeling occurred in vessels cultured under no-flow conditions and was inhibited by flow-dependent NO synthesis.