Published in

Elsevier, Solid State Communications, 9-10(146), p. 380-383

DOI: 10.1016/j.ssc.2008.03.034

Links

Tools

Export citation

Search in Google Scholar

Growth of aligned carbon nanotube arrays on metallic substrate and its application to supercapacitors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Aligned carbon nanotube arrays (ACNTAs) with lengths up to 150 μm were fabricated on metallic alloy (Inconel 600) substrates by pyrolysis of iron (II) phthalocyanine (FePc) in the presence of ethylene (C2H4). The as-grown ACNTAs, formed by aligned multi-walled carbon nanotubes with high purity, were characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and Raman spectroscopy techniques. The ACNTAs were used directly as electrode materials in supercapacitors with (Et)4NBF4 + propylene carbonate (PC) as electrolyte, and their electrochemical properties were investigated. A rectangular-shaped cyclic voltammetry (CV) curve was observed even at a sweep rate of 1000 mV s−1. The specific capacitance measured at 1000 mV s−1 was about 57 % (47 F g−1) of that obtained at 1 mV s−1 (83 F g−1), and an equivalent series resistance (ESR) of 0.55 Ω was measured for the ACNTA and activated carbon pair electrodes embedded in a coin cell. The results indicated that the ACNTAs could be a promising candidate as electrode materials in supercapacitors.