Published in

EDP Sciences, Astronomy & Astrophysics, 1(484), p. 107-118, 2008

DOI: 10.1051/0004-6361:20078465

Links

Tools

Export citation

Search in Google Scholar

The evolution of the photometric properties of Local Group dwarf spheroidal galaxies

Journal article published in 2008 by F. Calura ORCID, G. L. Lanfranchi, G. A. Lanfranchi, F. Matteucci
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We investigate the present-day photometric properties of the dwarf spheroidal galaxies in the Local Group. From the analysis of their integrated colours, we consider a possible link between dwarf spheroidals and giant ellipticals. From the analysis of the V vs (B-V) plot, we search for a possible evolutionary link between dwarf spheroidal galaxies (dSphs) and dwarf irregular galaxies (dIrrs). By means of chemical evolution models combined with a spectro-photometric model, we study the evolution of six Local Group dwarf spheroidal galaxies (Carina, Draco, Sagittarius, Sculptor, Sextans and Ursa Minor). The chemical evolution models, which adopt up-to-date nucleosynthesis from low and intermediate mass stars as well as nucleosynthesis and energetic feedback from supernovae type Ia and II, reproduce several observational constraints of these galaxies, such as abundance ratios versus metallicity and the metallicity distributions. The proposed scenario for the evolution of these galaxies is characterised by low star formation rates and high galactic wind efficiencies. Such a scenario allows us to predict integrated colours and magnitudes which agree with observations. Our results strongly suggest that the first few Gyrs of evolution, when the star formation is most active, are crucial to define the luminosities, colours, and other photometric properties as observed today. After the star formation epoch, the galactic wind sweeps away a large fraction of the gas of each galaxy, which then evolves passively. Our results indicate that it is likely that at a certain stage of their evolution, dSphs and dIrrs presented similar photometric properties. However, after that phase, they evolved along different paths, leading them to their currently disparate properties. Comment: 13 pages, Astronomy & Astrophysics, accepted