Dissemin is shutting down on January 1st, 2025

Published in

Frontiers Media, Frontiers in Microbiology, (6), 2015

DOI: 10.3389/fmicb.2015.00825

Links

Tools

Export citation

Search in Google Scholar

Different metabolic features of Bacteroides fragilis growing in the presence of glucose and exopolysaccharides of bifidobacteria

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Bacteroides is among the most abundant microorganism inhabiting the human intestine. They are saccharolytic bacteria able to use dietary or host-derived glycans as energy sources. Some Bacteroides fragilis strains contribute to the maturation of the immune system but it is also an opportunistic pathogen. The intestine is the habitat of most Bifidobacterium species, some of whose strains are considered probiotics. Bifidobacteria can synthesize exopolysaccharides (EPS), which are complex carbohydrates that may be available in the intestinal environment. We studied the metabolism of B. fragilis when an EPS preparation from bifidobacteria was added to the growth medium compared to its behavior with added glucose. 2D-DIGE coupled with the identification by MALDI-TOF/TOF evidenced proteins that were differentially produced when EPS was added. The results were supported by RT qPCR gene expression analysis. The intracellular and extracellular pattern of certain amino acids, the redox balance and the a-glucosidase activity were differently affected in EPS with respect to glucose. These results allowed us to hypothesize that three general main events, namely the activation of amino acids catabolism, enhancement of the transketolase reaction from the pentose-phosphate cycle, and activation of the succinate-propionate pathway, promote a shift of bacterial metabolism rendering more reducing power and optimizing the energetic yield in the form of ATP when Bacteroides grow with added EPS. Our results expand the knowledge about the capacity of B. fragilis for adapting to complex carbohydrates and amino acids present in the intestinal environment. © 2015 Rios-covian, Sanchez, Salazar, Martinez, Redruello, Gueimonde and De los Reyes-Gavilan. ; This work was financed by projects AGL2010-16525 and AGL2013-43770-R from Plan Nacional/Plan Estatal de I+D+I (Spanish Ministry of Economy and Competitiveness, MINECO). The activity of Probiotics and Prebiotics Group is being partly supported through the Grant GRUPIN14-043 from Plan Regional de Investigación del Principado de Asturias. Both, national and regional grants received cofounding from European Union FEDER funds. DR-C was the recipient of predoctoral FPI fellowship whereas BS enjoys a Ramon and Cajal contract from MINECO. NS benefits from a Clarin post-doctoral contract (Marie Curie European CoFund Program) cofinanced by Plan Regional de Investigación del Principado de Asturias, Spain. We acknowledge the excellent technical assistance of Lidia Alaez, whose technician contract was partially supported by the project AGL2010-16525 and by Plan Regional de Investigación del Principado de Asturias, through the grant COF 13-020. ; Peer Reviewed