Published in

American Society for Microbiology, Antimicrobial Agents and Chemotherapy, 7(49), p. 2753-2759, 2005

DOI: 10.1128/aac.49.7.2753-2759.2005

Links

Tools

Export citation

Search in Google Scholar

Macrolide Resistance in Campylobacter jejuni and Campylobacter coli: Molecular Mechanism and Stability of the Resistance Phenotype

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A collection of 23 macrolide-resistant Campylobacter isolates from different geographic areas was investigated to determine the mechanism and stability of macrolide resistance. The isolates were identified as Campylobacter jejuni or Campylobacter coli based on the results of the hippurate biochemical test in addition to five PCR-based genotypic methods. Three point mutations at two positions within the peptidyl transferase region in domain V of the 23S rRNA gene were identified. About 78% of the resistant isolates exhibited an A-->G transition at Escherichia coli equivalent base 2059 of the 23S rRNA gene. The isolates possessing this mutation showed a wide range of erythromycin and clarithromycin MICs. Thus, this mutation may incur a greater probability of treatment failure in populations infected by resistant Campylobacter isolates. Another macrolide-associated mutation (A-->C transversion), at E. coli equivalent base 2058, was detected in about 13% of the isolates. An A-->G transition at a position cognate with E. coli 23S rRNA base 2058, which is homologous to the A2142G mutation commonly described in Helicobacter pylori, was also identified in one of the C. jejuni isolates examined. In the majority of C. jejuni isolates, the mutations in the 23S rRNA gene were homozygous except in two cases where the mutation was found in two of the three copies of the target gene. Natural transformation demonstrated the transfer of the macrolide resistance phenotype from a resistant Campylobacter isolate to a susceptible Campylobacter isolate. Growth rates of the resulting transformants containing A-2058-->C or A-2059-->G mutations were similar to that of the parental isolate. The erythromycin resistance of six of seven representative isolates was found to be stable after successive subculturing in the absence of erythromycin selection pressure regardless of the resistance level, the position of the mutation, or the number of the mutated copies of the target gene. One C. jejuni isolate showing an A-2058-->G mutation, however, reverted to erythromycin and clarithromycin susceptibility after 55 subcultures on erythromycin-free medium. Investigation of ribosomal proteins L4 and L22 by sequence analysis in five representative isolates of C. jejuni and C. coli demonstrated no significant macrolide resistance-associated alterations in either the L4 or the L22 protein that might explain either macrolide resistance or enhancement of the resistance level.