Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Behavioral Ecology, 6(24), p. 1415-1425, 2013

DOI: 10.1093/beheco/art086

Links

Tools

Export citation

Search in Google Scholar

Inferring activity budgets in wild animals to estimate the consequences of disturbances

Journal article published in 2013 by Fredrik Christiansen, Marianne H. Rasmussen, David Lusseau ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Activity budgets can provide a direct link to an animal’s bioenergetic budget and is thus a valuable unit of measure when assessing humaninduced nonlethal effects on wildlife conservation status. However, activity budget inference can be challenging for species that are difficult to observe and require multiple observational variables. Here, we assessed whether whalewatching boat interactions could affect the activity budgets of minke whales (Balaenoptera acutorostrata). We used a stepwise modeling approach to quantitatively record, identify, and assign activity states to continuous behavioral time series data, to estimate activity budgets. First, we used multiple behavioral variables, recorded from continuous visual observations of individual animals, to quantitatively identify and define behavioral types. Activity states were then assigned to each sampling unit, using a combination of hidden and observed states. Three activity states were identified: nonfeeding, foraging, and surface feeding (SF). From the resulting time series of activity states, transition probability matrices were estimated using first-order Markov chains. We then simulated time series of activity states, using Monte Carlo methods based on the transition probability matrices, to obtain activity budgets, accounting for heterogeneity in state duration. Whalewatching interactions reduced the time whales spend foraging and SF, potentially resulting in an overall decrease in energy intake of 42%. This modeling approach thus provides a means to link short-term behavioral changes resulting from human disturbance to potential long-term bioenergetic consequences in animals. It also provides an analytical framework applicable to other species when direct observations of activity states are not possible.