Published in

Portland Press, Biochemical Journal, 1(313), p. 327-334, 1996

DOI: 10.1042/bj3130327

Links

Tools

Export citation

Search in Google Scholar

The specificity of mitochondrial complex I for ubiquinones.

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We report the first detailed study on the ubiquinone (coenzyme Q; abbreviated to Q) analogue specificity of mitochondrial complex I, NADH:Q reductase, in intact submitochondrial particles. The enzymic function of complex I has been investigated using a series of analogues of Q as electron acceptor substrates for both electron transport activity and the associated generation of membrane potential. Q analogues with a saturated substituent of one to three carbons at position 6 of the 2,3-dimethoxy-5-methyl-1,4-benzoquinone ring have the fastest rates of electron transport activity, and analogues with a substituent of seven to nine carbon atoms have the highest values of association constant derived from NADH:Q reductase activity. The rate of NADH:Q reductase activity is potently but incompletely inhibited by rotenone, and the residual rotenone-insensitive rate is stimulated by Q analogues in different ways depending on the hydrophobicity of their substituent. Membrane potential measurements have been undertaken to evaluate the energetic efficiency of complex I with various Q analogues. Only hydrophobic analogues such as nonyl-Q or undecyl-Q show an efficiency of membrane potential generation equivalent to that of endogenous Q. The less hydrophobic analogues as well as the isoprenoid analogue Q-2 are more efficient as substrates for the redox activity of complex I than for membrane potential generation. Thus the hydrophilic Q analogues act also as electron sinks and interact incompletely with the physiological Q site in complex I that pumps protons and generates membrane potential.