Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, Journal of Physical Chemistry Letters, 2(3), p. 203-208, 2012

DOI: 10.1021/jz201579y

Links

Tools

Export citation

Search in Google Scholar

Hydrogen Bond Switching among Flavin and Amino Acids Determines the Nature of Proton-Coupled Electron Transfer in BLUF Photoreceptors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

BLUF domains are flavin-binding photoreceptors that can be reversibly switched from a dark-adapted state to a light-adapted state. Proton-coupled electron transfer (PCET) from a conserved tyrosine to the flavin that results in a neutral flavin semiquinone/tyrosyl radical pair constitutes the photoactivation mechanism of BLUF domains. Whereas in the dark-adapted state PCET occurs in a sequential fashion where electron transfer precedes proton transfer, in the light-adapted state the same radical pair is formed by a concerted mechanism. We propose that the altered nature of the PCET process results from a hydrogen bond switch between the flavin and its surrounding amino acids that preconfigures the system for proton transfer. Hence, BLUF domains represent an attractive biological model system to investigate and understand PCET in great detail.