Published in

Elsevier, Journal of Nuclear Materials, 1-3(371), p. 37-52

DOI: 10.1016/j.jnucmat.2007.05.005

Links

Tools

Export citation

Search in Google Scholar

Ferritic/martensitic steels for next-generation reactors

Journal article published in 2007 by R. L. Klueh, A. T. Nelson ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Concepts for the next generation of nuclear power reactors designed to meet increasing world-wide demand for energy include water-cooled, gas-cooled, and liquid-metal-cooled reactors. Reactor conditions for several designs offer challenges for engineers and designers concerning which structural and cladding materials to use. Depending on operating conditions, some of the designs favor the use of elevated-temperature ferritic/martensitic steels for in-core and out-of core applications. This class of commercial steels has been investigated in previous work on international fast reactor and fusion reactor research programs. More recently, international fusion reactor research programs have developed and tested elevated-temperature reduced-activation steels. Steels from these fission and fusion programs will provide reference materials for future fission applications. In addition, new elevated-temperature steels have been developed in recent years for conventional power systems that also need to be considered for the next generation of nuclear reactors.