Published in

Wiley Open Access, FASEB Journal, S1(27), 2013

DOI: 10.1096/fasebj.27.1_supplement.986.7

Cell Press, Molecular Cell, 3(49), p. 439-452, 2013

DOI: 10.1016/j.molcel.2012.11.028

Links

Tools

Export citation

Search in Google Scholar

Widespread regulation of translation by elongation pausing in heat shock

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Global repression of protein synthesis is a hallmark of the cellular stress response and has been attributed primarily to inhibition of translation initiation, although this mechanism may not always explain the full extent of repression. Here, using ribosome footprinting, we show that 2 hr of severe heat stress triggers global pausing of translation elongation at around codon 65 on most mRNAs in both mouse and human cells. The genome-wide nature of the phenomenon, its location, and features of protein N termini suggested the involvement of ribosome-associated chaperones. After severe heat shock, Hsp70's interactions with the translational machinery were markedly altered and its association with ribosomes was reduced. Pretreatment with mild heat stress or overexpression of Hsp70 protected cells from heat shock-induced elongation pausing, while inhibition of Hsp70 activity triggered elongation pausing without heat stress. Our findings suggest that regulation of translation elongation in general, and by chaperones in particular, represents a major component of cellular stress responses.