Elsevier, Geochimica et Cosmochimica Acta, 19(66), p. 3481-3504, 2002
DOI: 10.1016/s0016-7037(02)00909-2
Full text: Download
Interpretation of U-series disequilibria in midocean ridge basalts is highly dependent on the bulk partition coefficients for U and Th and therefore the mineralogy of the mantle source. Distinguishing between the effect of melting processes and variable source compositions on measured disequilibria (238U-230Th-226Ra and 235U-231Pa) requires measurement of the radiogenic isotopes Hf, Nd, Sr, and Pb. Here, we report measurements of 238U-230Th-226Ra and 235U-231Pa disequilibria; Hf, Nd, Sr, and Pb isotopic; and major and trace element compositions for a suite of 20 young midocean ridge basalts from the East Pacific Rise axis between 9°28′ and 9°52′N. All of the samples were collected within the axial summit trough using the submersible Alvin. The geological setting and observational data collected during sampling operations indicate that all the rocks are likely to have been erupted from 1991 to 1992 or within a few decades of that time. In these samples, 230Th excesses and 226Ra excesses are variable and inversely correlated. Because the eruption ages of the samples are much less than the half-life of 226Ra, this inverse correlation between 230Th and 226Ra excesses can be considered a primary feature of these lavas. For the lava suite analyzed in this study, 226Ra and 230Th excesses also vary with lava composition: 226Ra excesses are negatively correlated with Na8 and La/Yb and positively correlated with Mg#. Conversely, 230Th excesses are positively correlated with Na8 and La/Yb and negatively correlated with Mg#. Th/U, 230Th/232Th, and 230Th excesses are also variable and correlated to one another. 231Pa excesses are large but relatively constant and independent of Mg#, La/Yb, Th/U, and Na8. The isotope ratios 143Nd/144Nd, 176Hf/177Hf, 87Sr/86Sr, and 208Pb/206Pb are constant within analytical uncertainty, indicating that they were derived from a common source. The source is homogeneous with respect to parent/daughter ratios Lu/Hf, Sm/Nd, Rb/Sr, and Th/U; therefore, the measured variations of Th/U, 230Th, and 226Ra excesses and major and trace element compositions in these samples are best explained by polybaric melting of a homogeneous source, not by mixing of compositionally distinct sources.