Dissemin is shutting down on January 1st, 2025

Published in

American Physiological Society, American Journal of Physiology - Heart and Circulatory Physiology, 2(289), p. H916-H923, 2005

DOI: 10.1152/ajpheart.01014.2004

Links

Tools

Export citation

Search in Google Scholar

S-nitroso-albumin carries a thiol-labile pool of nitric oxide, which causes venodilation in the rat

Journal article published in 2005 by Nelson N. Orie ORCID, Patrick Vallance, Dean P. Jones, Kevin P. Moore
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

It is now established that S-nitroso-albumin (SNO-albumin) circulates at low nanomolar concentrations under physiological conditions, but concentrations may increase to micromolar levels during disease states (e.g., cirrhosis or endotoxemia). This study tested the hypothesis that high concentrations of SNO-albumin observed in some diseases modulate vascular function and that it acts as a stable reservoir of nitric oxide (NO), releasing this molecule when the concentrations of low-molecular-weight thiols are increased. SNO-albumin was infused into rats to increase the plasma concentration from <50 nmol/l to approximately 4 micromol/l. This caused a 29 +/- 6% drop in blood pressure, 20 +/- 4% decrease in aortic blood flow, and a 25 +/- 14% reduction of renal blood flow within 10 min. These observations were in striking contrast to those of an infused arterial vasodilator (hydralazine), which increased aortic blood flow, and suggested that SNO-albumin acts primarily as a venodilator in vivo. This was confirmed by the observations that glyceryl trinitrate (a venodilator) led to similar hemodynamic changes and that the hemodynamic effects of SNO-albumin are reversed by infusion of colloid. Infusion of N-acetylcysteine into animals with artificially elevated plasma SNO-albumin concentrations led to the rapid decomposition of SNO-albumin in vivo and reproduced the hemodynamic effects of SNO-albumin infusion. These data demonstrate that SNO-albumin acts primarily as a venodilator in vivo and represents a stable reservoir of NO that can release NO when the concentrations of low-molecular-weight thiols are elevated.