Published in

American Chemical Society, Journal of Organic Chemistry, 20(80), p. 9900-9909, 2015

DOI: 10.1021/acs.joc.5b01370

Links

Tools

Export citation

Search in Google Scholar

Tautomerism of Warfarin: Combined Chemoinformatics, Quantum Chemical, and NMR Investigation

Journal article published in 2015 by Laura Guasch, Megan L. Peach ORCID, Marc C. Nicklaus
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Warfarin, an important anticoagulant drug, can exist in solution in forty distinct tautomeric forms through both prototropic tautomerism and ring-chain tautomerism. We have investigated all warfarin tautomers with computational and NMR approaches. Relative energies calculated at the B3LYP/6-311G++(d,p) level of theory indicate that the 4-hydroxycoumarin cyclic hemiketal tautomer is the most stable tautomer in aqueous solution, followed by the 4-hydroxycoumarin open-chain tautomer. This is in agreement with our NMR experiments where the spectral assignments indicate that warfarin exists mainly as a mixture of cyclic hemiketal diastereomers, with an open-chain tautomer as a minor component. We present a diagram of the interconversion of warfarin created taking into account the calculated equilibrium constants (pKT) for all tautomeric reactions. These findings help with gaining further understanding of proton transfer and ring closure tautomerization processes. We also discuss the results in the context of chemoinformatics rules for handling tautomerism.