Published in

American Association of Immunologists, The Journal of Immunology, 2(175), p. 1310-1319, 2005

DOI: 10.4049/jimmunol.175.2.1310

Links

Tools

Export citation

Search in Google Scholar

IL-1β induces IL-6 expression in human orbital fibroblasts: Identification of an anatomic-site specific phenotypic attribute relevant to thyroid-associated ophthalmopathy

Journal article published in 2005 by Beiling Chen, Shanli Tsui, Terry J. Smith ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Human orbital fibroblasts exhibit a unique inflammatory phenotype. In the present study, we report that these fibroblasts, when treated with IL-1beta, express high levels of IL-6, a cytokine involved in B cell activation and the regulation of adipocyte metabolism. The magnitude of this induction is considerably greater than that in dermal fibroblasts and involves up-regulation of IL-6 mRNA levels. IL-1beta activates both p38 and ERK 1/2 components of the MAPK pathways. Disrupting these could attenuate the IL-6 induction. The up-regulation involves enhanced IL-6 gene promoter activity and retardation of IL-6 mRNA decay by IL-1beta. Dexamethasone completely blocked the effect of IL-1beta on IL-6 expression. Orbital fibroblasts also express higher levels of IL-6R than do skin-derived cells. When treated with rIL-6 (10 ng/ml), STAT3 is transiently phosphorylated. Thus, the exaggerated capacity of orbital fibroblasts to express high levels of both IL-6 and its receptor in an anatomic site-selective manner could represent an important basis for immune responses localized to the orbit in Graves' disease.