Published in

American Chemical Society, The Journal of Physical Chemistry A, 50(110), p. 13500-13506, 2006

DOI: 10.1021/jp065831r

Links

Tools

Export citation

Search in Google Scholar

Rate Constants and H Atom Branching Ratios of the Gas-Phase Reactions of Methylidyne CH(X2Π) Radical with a Series of Alkanes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The reactions of the CH radical with several alkanes were studied, at room temperature, in a low-pressure fast-flow reactor. CH(X2Pi, v = 0) radicals were obtained from the reaction of CHBr(3) with potassium atoms. The overall rate constants at 300 K are (0.76 +/- 0.20) x 10(-10) [Fleurat-Lessard, P.; Rayez, J. C.; Bergeat, A.; Loison, J. C. Chem. Phys. 2002, 279, 87],1 (1.60 +/- 0.60) x 10(-10)[Galland, N.; Caralp, F.; Hannachi, Y.; Bergeat, A.; Loison, J.-C. J. Phys. Chem. A 2003, 107, 5419],2 (2.20 +/- 0.80) x 10(-10), (2.80 +/- 0.80) x 10(-10), (3.20 +/- 0.80) x 10(-10), (3.30 +/- 0.60) x 10(-10), and (3.60 +/- 0.80) x 10(-10) cm3 molecule(-1) s(-1), (errors refer to +/-2sigma) for methane, ethane, propane, n-butane, n-pentane, neo-pentane, and n-hexane respectively. The experimental overall rate constants correspond to those obtained using a simple classical capture theory. Absolute atomic hydrogen production was determined by V.U.V. resonance fluorescence, with H production from the CH + CH4 reaction being used as a reference. Observed H branching ratios were for CH4, 1.00[Fleurat-Lessard, P.; Rayez, J. C.; Bergeat, A.; Loison, J. C. Chem. Phys. 2002, 279, 87];1 C(2)H(6), 0.22 +/- 0.08 [Galland, N.; Caralp, F.; Hannachi, Y.; Bergeat, A.; Loison, J.-C. J. Phys. Chem. A 2003, 107, 5419];2 C(3)H(8), 0.19 +/- 0.07; C(4)H(10) (n-butane), 0.14 +/- 0.06; C(5)H(12) (n-pentane), 0.52 +/- 0.08; C(5)H(12) (neo-pentane), 0.51 +/- 0.08; C(5)H(12) (iso-pentane), 0.12 +/- 0.06; C(6)H(14) (n-hexane), 0.06 +/- 0.04.