Published in

Oxford University Press, ICES Journal of Marine Science, 1(65), p. 111-120, 2007

DOI: 10.1093/icesjms/fsm182

Links

Tools

Export citation

Search in Google Scholar

Power of monitoring surveys to detect abundance trends in depleted populations: The effects of density-dependent habitat use, patchiness, and climate change

Journal article published in 2007 by Julia L. Blanchard ORCID, David L. Maxwell, Simon Jennings
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Blanchard, J. L., Maxwell, D. L., and Jennings, S. 2008. Power of monitoring surveys to detect abundance trends in depleted fish populations: the effects of density-dependent habitat use, patchiness, and climate change. – ICES Journal of marine Science, 65: 111–120. Traditionally, trawl surveys were designed to collect fishery-independent data for assessing the population dynamics of commercially exploited species. However, trawl survey data are increasingly used to describe the abundance, distribution and ecology of a wide range of species in studies of climate change and fishing effects. These new uses of survey data suggest that improved understanding of the value and limitations of existing survey designs is required. We compared the power of different survey designs (where stations are fixed, fixed stratified, random, or random stratified) to detect known trends in the abundance of depleted populations. Modelled populations were characterized by different temperature preference, density-dependent habitat selection, and patterns of small-scale aggregation (patchiness). Temperature preferences and local patchiness had an influence on the power of different surveys to detect increases in abundance, and in some scenarios, survey-area indices would consistently underestimate or overestimate trends in overall abundance. As the distributions of many fish populations have shifted in response to climate change, exhibit distribution-abundance relationships, and have been depleted by fishing, we conclude that survey indices may provide partial or unreliable information on changes in the true abundance of the wider range of species now of interest. To disentangle the effects of fishing, climate, and biology on the abundance of fish populations, and to monitor the depletion and recovery of species threatened by fishing, there should be greater emphasis on coordinating the timing, areas of coverage, and methods of sampling of surveys of the Northeast Atlantic continental shelf.