Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 17(112), p. 5479-5486, 2008

DOI: 10.1021/jp711927h

Links

Tools

Export citation

Search in Google Scholar

Selenourea−Ca2+Reactions in Gas Phase. Similarities and Dissimilarities with Urea and Thiourea

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The gas-phase reactions between Ca(2+) and selenourea were investigated by means of electrospray/tandem mass spectrometry techniques. The MS/MS spectra of [Ca(selenourea)](2+) complexes show intense peaks at m/z 43, 121, 124, and 146 and assigned to monocations produced in different coulomb explosion processes. The structures and bonding characteristics of the stationary points of the [Ca(selenourea)](2+) potential energy surface (PES) were theoretically studied by DFT calculations carried out at the B3LYP/6-311+G(3df,2p)//B3LYP/6-311+G(d,p) level. The analysis of the topology of this PES allows identification of H(2)NCNH(+), CaSeH(+), selenourea(+). and CaNCSe(+) ion peaks at m/z 43, 121, 124, and 146, respectively. The reactivity of selenourea and the topology of the corresponding potential energy surface mimic that of thiourea. However, significant dissimilarities are found with respect to urea. The dissociative electron-transfer processes, not observed for urea, is one of the dominant fragmentations for selenourea, reflecting its much lower ionization energy. Similarly, the coulomb explosions yielding CaXH(+) + H(2)NCNH(+) (X = O or Se), which for urea are not observed, are very favorable for selenourea. Finally, while in urea the loss of NH(3) competes with the formation of NH(4+), for selenourea the latter process is clearly dominant.