Full text: Download
Propagule dispersal biology is a crucial avenue of research for rare plant species, especially those adapted to disturbance, such as northern blazing star (Liatris scariosa var. novae-angliae), a rare, early-successional New England grassland perennial. We examined the dispersal ability of northern blazing star propagules collected from 14 populations covering the entire latitudinal range of the taxon. Multiple regression demonstrated that dispersal ability, as measured by drop time in still air and flight distance in a low-speed wind tunnel, decreased significantly with propagule size and achene length, and increased with achene width and (for flight distance) pappus length. We used this multiple regression model to test for differences in predicted dispersal capability among maternal families, populations, and inland, coastal, and island habitats. Dispersal capability differed significantly among families and populations but not regions, and allometric relationships between morphological measurements were consistent across populations. Overall, dispersal capability was negatively correlated with germination success in a common greenhouse environment. However, germination success for a given dispersal ability, as well as achene shape, differed among populations. These results suggest specific populations to be targeted for management efforts promoting dispersal and establishment.