Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Bioresource Technology, (111), p. 294-300

DOI: 10.1016/j.biortech.2012.01.154

Links

Tools

Export citation

Search in Google Scholar

Quantitatively understanding reduced xylose fermentation performance in AFEXTM treated corn stover hydrolysate using Saccharomyces cerevisiae 424A (LNH-ST) and Escherichia coli KO11

Journal article published in 2012 by Mingjie Jin ORCID, Venkatesh Balan, Christa Gunawan, Bruce E. Dale
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Reduced xylose fermentation performance has been an issue during fermentation of AFEX™ hydrolysate using Saccharomyces cerevisiae 424A (LNH-ST) or Escherichia coli KO11. To better understand why fermentation performance is reduced, we quantitatively studied the effects of compounds present in the fermentation broth on xylose consumption. The compounds include biomass degradation products, ethanol and fermentation metabolites. The xylose consumption capability of E. coli KO11 was almost totally inhibited by the presence of both degradation products and ethanol. On the other hand, for S. cerevisiae 424A, 89% reduction of xylose consumption rate was found during hydrolysate fermentation. Degradation products, ethanol and fermentation metabolites were responsible for 32%, 24% and 33% of such reduction, respectively. Those results suggest that to further improve the xylose fermentation in hydrolysate, strains should be selected not only for degradation products tolerance but also for ethanol and fermentation metabolites tolerance.