Published in

Elsevier, Chemosphere, 8(84), p. 1102-1107

DOI: 10.1016/j.chemosphere.2011.04.042

Links

Tools

Export citation

Search in Google Scholar

A simple McGowan specific volume correction for branching in hydrocarbons and its consequences for some other solvation parameter values

Journal article published in 2011 by Paul C. M. van Noort, Joris J. H. Haftka, John R. Parsons ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Differences in molecular properties between linear and branched alkanes as well as between compounds with branched alkyl groups is of relevance due to the large number of branched isomers of environmentally relevant compounds (e.g. fuels, fuel additives, surfactants). For branched alkane vapor pressures, the McGowan specific volume is a poor predictor. Therefore, in this study a correction on the McGowan specific volume is derived in terms of the number of branches and the number of pairs of vicinal branches to improve the prediction of branched alkane vapor pressures. This branching correction also brought branched/alkane solvent accessible volumes, octanol/water partition coefficients, air/hexadecane partition coefficients, and aqueous solubilities as well as alkyl-branched substituted aliphatic hydrocarbon air/hexadecane partition coefficients more in line with corresponding linear hydrocarbon properties when compared on a McGowan specific volume basis. Even for air-hexadecane partition coefficients of substituted aliphatic hydrocarbons with substituents at non-terminal carbons, application of the branching correction to the carbon bearing the substituent caused these partition coefficients to be more in line with those for linear compounds. Values for the Abraham A and B solvation parameters for nonlinear aliphatic ethers, amines, and alcohols, recalculated using branching corrected McGowan specific volumes, turned out to be closer to chemical expectations based on linear aliphatic ether, amine and alcohol values compared to previously reported experimental values obtained using uncorrected McGowan specific volumes. A comparison of alkylbenzene and alkene partition coefficient estimates from two different linear solvation energy relations, one containing a McGowan specific volume term and one without such a term, suggests that no branching correction is needed for alkyl groups at sp2 carbons. The main advantage of using branching corrected McGowan specific volumes is that the values of other solvation parameters become chemically more consistent.