Published in

Springer (part of Springer Nature), Applied Physics B: Lasers and Optics, 4(77), p. 447-454

DOI: 10.1007/s00340-003-1277-5

Links

Tools

Export citation

Search in Google Scholar

Soot visualisation by use of laser-induced soot vapourisation in combination with polarisation spectroscopy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A novel approach to the visualisation of soot is presented. It relies on a combination of laser-induced soot vapourisation and consecutive polarisation spectroscopy. Upon soot vapourisation, molecular fragments (for example, C2) emerge, and may serve as effective tracers for soot. In this study we demonstrate that saturated polarisation spectroscopy on photo-induced C2 can be exploited for soot detection. Signal maps featuring high signal-to-noise ratios were readily recorded in ethyne-rich flames and any spurious background, for example, caused by Rayleigh scattering, was successfully suppressed by means of spatial filtering. Additionally, investigations were carried out addressing how the attained signals correlate with local soot volumne fractions. For this purpose, height profiles of C2 number densities inferred from the polarisation spectroscopy signal maps were compared with profiles of the soot volumne fraction inferred from measurements with laser-induced incandescence. For low soot volumne fractions, the shapes of the height profiles from our approach agree rather well with the latter; they do not agree for higher soot volumne fractions. Further investigation is required to resolve this discrepancy. Scattering from particles in the Mie scattering range may hamper the application of this approach, and avenues are suggested for extending the applicability of the approach presented to large soot particles.