Published in

The Company of Biologists, Journal of Experimental Biology, 2014

DOI: 10.1242/jeb.093690

Links

Tools

Export citation

Search in Google Scholar

Activation of the cnidarian oxidative stress response by ultraviolet radiation, polycyclic aromatic hydrocarbons and crude oil

Journal article published in 2014 by Ann M. Tarrant, Adam M. Reitzel, Chun K. Kwok, Matthew J. Jenny ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Organisms are continuously exposed to reactive chemicals capable of causing oxidative stress and cellular damage. Antioxidant enzymes, such as superoxide dismutases (SODs) and catalases, are present in both prokaryotes and eukaryotes and provide an important means of neutralizing such oxidants. Studies in cnidarians have previously documented the occurrence of antioxidant enzymes (transcript expression, protein expression and/or enzymatic activity), but most of these studies have not been conducted in species with sequenced genomes or included phylogenetic analyses, making it difficult to compare results across species due to uncertainties in the relationships between genes. Through searches of the genome of the sea anemone Nematostella vectensis Stephenson, one catalase gene and six SOD family members were identified, including three copper/zinc-containing SODs (CuZnSODs), two manganese-containing SODs (MnSODs) and one copper chaperone of SOD (CCS). In 24 h acute toxicity tests, juvenile N. vectensis showed enhanced sensitivity to combinations of ultraviolet radiation (UV) and polycyclic aromatic hydrocarbons (PAHs, specifically pyrene, benzo[a]pyrene and fluoranthene) relative to either stressor alone. Adult N. vectensis exhibited little or no mortality following UV, benzo[a]pyrene or crude oil exposure but exhibited changes in gene expression. Antioxidant enzyme transcripts were both upregulated and downregulated following UV and/or chemical exposure. Expression patterns were most strongly affected by UV exposure but varied between experiments, suggesting that responses vary according to the intensity and duration of exposure. These experiments provide a basis for comparison with other cnidarian taxa and for further studies of the oxidative stress response in N. vectensis.