Published in

Wiley, Journal of Anatomy, 2(222), p. 203-213, 2012

DOI: 10.1111/joa.12006

Links

Tools

Export citation

Search in Google Scholar

The spatial and temporal arrangement of the radial glial scaffold suggests a role in axon tract formation in the developing spinal cord

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Radial glial cells serve diverse roles during the development of the central nervous system (CNS). In the embryonic brain, they are recognised as guidance conduits for migrating neuroblasts and as multipotent stem cells, generating both neurons and glia. While their stem cell capacities in the developing spinal cord are as yet not fully clarified, they are classically seen as a population of astrocytes precursors, before gradually disappearing as the spinal cord matures. Although the origins and lineages of CNS radial glial cells are being more clearly understood, the relationships between radial glial cells and growing white matter (WM) tracts are largely unknown. Here, we provide an in-depth description of the distribution and organisation of radial glial cell processes during the peak periods of axonogenesis in the rat spinal cord. We show that radial glial cell distribution is highly ordered in the WM from E14 to E18, when the initial patterning of axon tracts is taking place. We report that the density of radial glial cell processes is tightly conserved throughout development in the dorsal, lateral and ventral WM funiculi along the rostrocaudal axis of the spinal cord. We provide evidence that from E16 the dorsal funiculi grow within and are segregated by fascicles of processes emanating from the dorsomedial septum. The density of radial glial cells declines with the maturation of axon tracts and coincides with the onset of the radial glial cell-astrocyte transformation. As such, we propose that radial glial cells act as structural scaffolds by compartmentalising and supporting WM patterning in the spinal cord during embryonic development.