Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 15(113), p. 5208-5216, 2009

DOI: 10.1021/jp809000e

Links

Tools

Export citation

Search in Google Scholar

The Role of Cholesterol and Structurally Related Molecules in Enhancing Transfection of Cationic Liposome-DNA Complexes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Motivated by its important role in gene delivery, we have studied the effect of cholesterol and analogs on the transfection efficiency (TE) of lamellar cationic liposome-DNA (CL-DNA) complexes in vitro. Addition of cholesterol to low-transfecting DOTAP/DOPC-DNA complexes increases TE, with 15 mol % cholesterol already yielding 10-fold improvement. Steroids lacking the alkyl tail only modestly enhance TE, while molecules retaining it strongly enhance TE. All steroid-containing CL-DNA complexes exhibit the lamellar structure. The increase in experimentally determined membrane charge density (a universal parameter governing the TE of lamellar CL-DNA complexes) with cholesterol content alone cannot account for the rapid increase of TE. Instead, the reduction of the hydration repulsion layer of the membrane, caused by replacement of DOPC by cholesterol, promotes fusion between cationic membranes of CL-DNA complexes and anionic endosomal membranes, thus facilitating release of complexes and enhancing TE.