Published in

Elsevier, Metabolic Engineering, (21), p. 2-8, 2014

DOI: 10.1016/j.ymben.2013.10.011

Links

Tools

Export citation

Search in Google Scholar

Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study describes the construction of two flavonoid biosensors, which can be applied for metabolic engineering of Escherichia coli strains. The biosensors are based on transcriptional regulators combined with autofluorescent proteins. The transcriptional activator FdeR from Herbaspirillum seropedicae SmR1 responds to naringenin, while the repressor QdoR from Bacillus subtilis is inactivated by quercetin and kaempferol. Both biosensors showed over a 7-fold increase of the fluorescent signal after addition of their specific effectors, and a linear correlation between the fluorescence intensity and externally added flavonoid concentration. The QdoR-biosensor was successfully applied for detection of kaempferol production in vivo at the single cell level by fluorescent-activated cell sorting. Furthermore, the amount of kaempferol produced highly correlated with the specific fluorescence of E. coli cells containing a flavonol synthase from Arabidopsis thaliana (fls1). We expect the designed biosensors to be applied for isolation of genes involved in flavonoid biosynthetic pathways.