Dissemin is shutting down on January 1st, 2025

Published in

European Geosciences Union, Natural Hazards and Earth System Sciences, 3(15), p. 429-442, 2015

DOI: 10.5194/nhess-15-429-2015

European Geosciences Union, Natural Hazards and Earth System Sciences Discssions, 8(2), p. 5079-5111

DOI: 10.5194/nhessd-2-5079-2014

Links

Tools

Export citation

Search in Google Scholar

Seasonal forecasting of fire over Kalimantan, Indonesia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Large-scale fires occur frequently across Indonesia, particularly in the southern region of Kalimantan and eastern Sumatra. They have considerable impacts on carbon emissions, haze production, biodiversity, health, and economic activities. In this study, we demonstrate that severe fire and haze events in Indonesia can generally be predicted months in advance using predictions of seasonal rainfall from the ECMWF System 4 coupled ocean–atmosphere model. Based on analyses of long, up-to-date series observations on burnt area, rainfall, and tree cover, we demonstrate that fire activity is negatively correlated with rainfall and is positively associated with deforestation in Indonesia. There is a contrast between the southern region of Kalimantan (high fire activity, high tree cover loss, and strong non-linear correlation between observed rainfall and fire) and the central region of Kalimantan (low fire activity, low tree cover loss, and weak, non-linear correlation between observed rainfall and fire). The ECMWF seasonal forecast provides skilled forecasts of burnt and fire-affected area with several months lead time explaining at least 70% of the variance between rainfall and burnt and fire-affected area. Results are strongly influenced by El Niño years which show a consistent positive bias. Overall, our findings point to a high potential for using a more physical-based method for predicting fires with several months lead time in the tropics rather than one based on indexes only. We argue that seasonal precipitation forecasts should be central to Indonesia's evolving fire management policy.