Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Power Sources, (288), p. 221-228, 2015

DOI: 10.1016/j.jpowsour.2015.04.125

Links

Tools

Export citation

Search in Google Scholar

A gold surface plasmon enhanced mesoporous titanium dioxide photoelectrode for the plastic-based flexible dye-sensitized solar cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The gold nanoparticles inlaid mesoporous titania nanoparticles (Au@MTNs) thin films are fabricated on a conductive plastic substrate by using a low-temperature electrophoretic deposition (EPD) process followed by a compression post-treatment. The obtained Au@MTNs electrode exhibits an excellent light trapping because of the formation of surface plasmons on the Au nanoparticles (NPs). The flexible Au@MTNs electrodes are applied for the photoanodes in all-plastic-based dye-sensitized solar cells (DSSCs). The Au@MTNs photoanodes containing various wt% of Au NPs are prepared in order to optimize the performance of the DSSCs. When 0.8 wt% of Au NPs is used in the Au@MTNs photoanode, a power conversion efficiency (η) of 5.62% is achieved under the illumination of 100 mW cm−2, which exhibits a 14% increase compared to the DSSC fabricated with pure a titanium dioxide (TiO2) photoanode (4.93%); this enhancement is attributed to the plasmonic light trapping provided by the Au NPs.