Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Materials Research Bulletin, (72), p. 20-28, 2015

DOI: 10.1016/j.materresbull.2015.07.008

Links

Tools

Export citation

Search in Google Scholar

Synthesis of titanate nanofibers co-sensitized with ZnS and Bi2S3 nanocrystallites and their application on pollutants removal

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The synthesis of nanocomposite materials combining titanate nanofibers (TNF) with nanocrystalline ZnS and Bi2S3 semiconductors is described in this work. The TNF were produced via hydrothermal synthesis and sensitized with the semiconductor nanoparticles, through a single-source precursor decomposition method. ZnS and Bi2S3 nanoparticles were successfully grown onto the TNF’s surface and Bi2S3-ZnS/TNF nanocomposite materials with different layouts were obtained using either a layer-by-layer or a co-sensitization approach. The samples’ photocatalytic performance was first evaluated through the production of the hydroxyl radical using terephthalic acid as probe molecule. All the tested samples show photocatalytic ability for the production of this oxidizing species. Afterwards, the samples were investigated for the removal of methylene blue. The nanocomposite materials with best adsorption ability for the organic dye were the ZnS/TNF and Bi2S3ZnS/TNF. The removal of the methylene blue was systematically studied, and the most promising results were obtained considering a sequential combination of an adsorption-photocatalytic degradation process using the Bi2S3ZnS/TNF powder as a highly adsorbent and photocatalyst material.