Published in

American Chemical Society, Crystal Growth and Design, 4(15), p. 1572-1576, 2015

DOI: 10.1021/acs.cgd.5b00219

Links

Tools

Export citation

Search in Google Scholar

Selective Isolation of Polycyclic Aromatic Hydrocarbons by Self-Assembly of a Tunable N→B Clathrate

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The combination of one dipyridyl linker [1,2-di(4-pyridyl)ethylene (DPE), 1,2-di(4-pyridyl)ethane (DPEt), or 4,4′-azopyridine (DPA)] with two molecules of arylboronate ester 1 produced dinuclear Lewis-type N→B adducts that can act as acyclic host for polycyclic aromatic hydrocarbons (PAHs) in the solid state. Nine crystalline solids of composition PAH@adduct (i.e., one PAH per adduct) were obtained from solutions containing a single PAH. On the basis of the single-crystal X-ray diffraction analysis of the compound ANT@A1 (ANT = anthracene; A1 = adduct being composed of DPE and two boronate esters 1), the PAH inclusion selectivity is related to a size-fitting adaptation to an octaedral-shaped pocket assembled by CH-π interactions between fragments of the diamine and the arylboronate ester 1. The resulting reversible organic clathrates can perform “catch and release” cycles of PAHs such as pyrene and can sequester selectively PAHs from mixtures in solution.