Published in

Elsevier, Chemical Engineering Journal, (234), p. 240-246

DOI: 10.1016/j.cej.2013.08.056

Links

Tools

Export citation

Search in Google Scholar

Renewable and high-concentration syngas production from oxidative reforming of simulated biogas with low energy cost in a plasma shade

Journal article published in 2013 by Jing-Lin Liu, Xiao-Song Li, Xiaobing Zhu ORCID, Kai Li, Chuan Shi, Ai-Min Zhu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A novel plasma shade with large reactive space generated by rotating spark channels was used for the first time for oxidative reforming of simulated biogas (CH4:CO2:O-2 = 3:2:2) to produce high-concentration syngas (CO + H-2) with low energy cost. This unique plasma exhibited rapid- and slow-zones where the conversion of O-2, CH4 and CO2 and dry-basis concentration of syngas (C-CO+H2(dry)) changed at two significantly different paces with specific energy input (SEI). With increasing SEI, the conversion and C-CO+H2(dry) first increased rapidly at SEI < 84 kJ/mol, while the conversion and C-CO+H2(dry) increased at a much slower pace at SEI > 84 kJ/mol. Moreover, V-shape profile of syngas energy cost (ECCO+H2dry) versus SEI was observed. Thereby, the optimal SEI was found at which the lowest ECCO+H2 (1.0 eV/molecule) and a very high C-CO+H2(dry) (73%) were simultaneously achieved. The good stability of the plasma reaction at the optimal SEI was verified over an 8-hour test.