Published in

Springer (part of Springer Nature), Marine Geophysical Research

DOI: 10.1007/s11001-015-9256-x

Links

Tools

Export citation

Search in Google Scholar

A geomorphological seabed classification for the Weddell Sea, Antarctica

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sea floor morphology plays an important role in many scientific disciplines such as ecology, hydrology and sedimentology since geomorphic features can act as physical controls for e.g. species distribution, oceano-graphically flow-path estimations or sedimentation processes. In this study, we provide a terrain analysis of the Weddell Sea based on the 500 m x 500 m resolution bathymetry data provided by the mapping project IBCSO. Seventeen seabed classes are recognized at the sea floor based on a fine and broad scale Benthic Positioning Index calculation highlighting the diversity of the glacially carved shelf. Beside the morphology, slope, aspect, terrain rugosity and hillshade were calculated and supplied to the data archive PANGAEA. Applying zonal statistics to the geomorphic features identified unambiguously the shelf edge of the Weddell Sea with a width of 45–70 km and a mean depth of about 1200 m ranging from 270 m to 4300 m. A complex morphology of troughs, flat ridges, pinnacles, steep slopes, seamounts, outcrops, and narrow ridges, structures with approx. 5–7 km width, build an approx. 40–70 km long swath along the shelf edge. The study shows where scarps and depressions control the connection between shelf and abyssal and where high and low declination within the scarps e.g. occur. For evaluation purpose, 428 grain size samples were added to the seabed class map. The mean values of mud, sand and gravel of those samples falling into a single seabed class was calculated, respectively, and assigned to a sediment texture class according to a common sediment classification scheme.