Published in

Elsevier, Journal of Alloys and Compounds, (583), p. 70-78

DOI: 10.1016/j.jallcom.2013.08.123

Links

Tools

Export citation

Search in Google Scholar

Structural and elastic properties of defect chalcopyrite HgGa2S4 under high pressure

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this work, we focus on the study of the structural and elastic properties of mercury digallium sulfide (HgGa2S4) at high pressures. This compound belongs to the family of AB(2)X(4) ordered-vacancy compounds and exhibits a tetragonal defect chalcopyrite structure. X-ray diffraction measurements at room temperature have been performed under compression up to 15.1 GPa in a diamond anvil cell. Our measurements have been complemented and compared with ab initio total energy calculations. The axial compressibility and the equation of state of the low-pressure phase of HgGa2S4 have been experimentally and theoretically determined and compared to other related ordered-vacancy compounds. The pressure dependence of the theoretical cation-anion and vacancy-anion distances and compressibilities in HgGa2S4 are reported and discussed in comparison to other related ordered-vacancy compounds. Finally, the pressure dependence of the theoretical elastic constants and elastic moduli of HgGa2S4 has been studied. Our calculations indicate that the low-pressure phase of HgGa2S4 becomes mechanically unstable above 13.8 GPa.