Published in

American Chemical Society, ACS Chemical Neuroscience, 7(5), p. 559-567, 2014

DOI: 10.1021/cn500041k

Links

Tools

Export citation

Search in Google Scholar

RNA based antagonist of NMDA receptors

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The N-methyl D-aspartate (NMDA) class of ionotropic glutamate receptors plays important roles in learning and memory as well as in a number of neurological disorders including Huntington's disease and cerebral ischemia. Here, we describe the isolation and characterization of a 2́ F-modified RNA aptamers directed against GluN2A-containing NMDA receptors. By adding a negative selection step towards the closely related AMPA and kainate receptors, the RNA aptamers specifically recognize NMDA receptors with dissociation constants in the nanomolar range. Electrophysiological characterization of these aptamers using rapid perfusion in outside-out patches reveals that they selectively inhibit the GluN2A containing subtype of NMDA receptors with little effect on the AMPA and kainate receptor subtypes. We also demonstrate that this RNA aptamer significantly reduces neurotoxicity in an in vitro model of cerebral ischemia. Given that the RNA based antagonist can be readily modified it can be used as a tool in targeted drug delivery or for imaging purposes in addition to having the potential use as a therapeutic intervention in disorders involving glutamate receptors.