Published in

Nature Research, Nature Protocols, 8(10), p. 1181-1197, 2015

DOI: 10.1038/nprot.2015.079

Links

Tools

Export citation

Search in Google Scholar

High-throughput microfluidics to control and measure signaling dynamics in single yeast cells

Journal article published in 2015 by Anders S. Hansen ORCID, Nan Hao ORCID, Erin K. O'Shea
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Microfluidics coupled to quantitative time-lapse fluorescence microscopy is transforming our ability to control, measure and understand signaling dynamics in single living cells. Here we describe a pipeline that incorporates multiplexed microfluidic cell culture, automated programmable fluid handling for cell perturbation, quantitative time-lapse microscopy and computational analysis of time-lapse movies. We illustrate how this setup can be used to control the nuclear localization of the budding yeast transcription factor Msn2. By using this protocol, we generate oscillations of Msn2 localization and measure the dynamic gene expression response of individual genes in single cells. The protocol allows a single researcher to perform up to 20 different experiments in a single day, while collecting data for thousands of single cells. Compared with other protocols, the present protocol is relatively easy to adopt and of higher throughput. The protocol can be widely used to control and monitor single-cell signaling dynamics in other signal transduction systems in microorganisms.