Published in

The Electrochemical Society, Journal of The Electrochemical Society, 2(162), p. A3013-A3020, 2014

DOI: 10.1149/2.0031502jes

Links

Tools

Export citation

Search in Google Scholar

Carbon-Coated Anatase TiO2Nanotubes for Li- and Na-Ion Anodes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Carbon-coated, anatase titanium dioxide nanotubes were prepared by carbonizing a polyacrylonitrile-based block copolymer grafted on the as-synthesized titanate nanotubes. As revealed by high resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS), this approach results in a very homogeneous and thin carbon coating, which is advantageous for those active materials storing lithium without undergoing significant volume changes upon ion (de-)insertion. As a matter of fact, thus prepared carbon-coated TiO 2 nanotubes presented an excellent long-term cycling stability for more than 500 cycles (0.02% capacity fading per cycle) and a very promising high rate performance (about 130 and 110 mAh g −1 at 10 C and 15 C, respectively). The influence of the tubular morphology on the rate performance is briefly discussed by comparing carbon-coated nanotubes and nanorods. Finally, the carbon-coated nanotubes were also investigated as sodium-ion anode material, showing very promising reversible capacities of around 170, 120, and 100 mAh g −1 at C/10, 1 C, and 2 C, respectively, rendering them as versatile anode material for lithium-and sodium-ion applications © The Author(s) 2014. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. [DOI: 10.1149/2.0031502jes] All rights reserved.