Published in

American Chemical Society, Journal of Physical Chemistry B (Soft Condensed Matter and Biophysical Chemistry), 28(118), p. 7739-7749, 2014

DOI: 10.1021/jp410298e

Links

Tools

Export citation

Search in Google Scholar

Interaction of Magnesium Ions with Pristine Single-Layer and Defected Graphene/Water Interfaces Studied by Second Harmonic Generation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This work reports thermodynamic and electrostatic parameters for fused silica/water interfaces containing cm2-sized graphene ranging from a single layer of pristine graphene to defected graphene. Second harmonic generation (SHG) measurements carried out at pH 7 indicate that the surface charge density of the fused silica/water interface containing the defected graphene (-0.009(3) to -0.010(3) C/m2) is between that of defect-free single layer graphene (-0.0049(8) C/m2) and bare fused silica (-0.013(6) C/m2). The interfacial free energy density of the fused silica/water interface is calculated from the Lippmann equation to be reduced by a factor of 7 in presence of single layer pristine graphene, while defected graphene reduces it only by a factor of at most 2. Subsequent SHG adsorption isotherm studies probing the Mg2+ adsorption at the fused silica/water interface result in fully reversible metal ion interactions and observed binding constants, Kads, of 4(1) - 5(1) x 103 M-1 for pristine graphene and 3(1) - 4(1) x 103 M-1 for defected graphene, corresponding to adsorption free energies, ΔGads, referenced to the 55.5 molarity of water, of -30(1) to -31.1(7) kJ/mol for both interfaces, comparable to Mg2+ adsorption at the bare fused silica/water interface. Maximum Mg2+ ion densities are obtained from Gouy-Chapman model fits to the Langmuir adsorption isotherms and found to range from 1.1(5) - 1.5(4) x 1012 ions adsorbed per cm2 for pristine graphene and 2(1) - 3.1(5) x 1012 ions adsorbed per cm2 for defected graphene, slightly smaller than those of for Mg2+ adsorption at the bare fused silica/water interface (2-4 x 1012 ions adsorbed per cm2), assuming the magnesium ions are bound as divalent species. We conclude that the presence of defects in the graphene sheet, which we estimate here to be around 1.3 x 1011 cm2, imparts only subtle changes in the thermodynamic and electrostatic parameters quantified here.